31 条题解
-
0
#include #include #include #include #include #include #include
int main() {
std::vector<char> chars; std::string hello_world = "hello world"; // 1. std::vector初始化 (用 ' ' 填充11个位置) chars.resize(11, ' '); // 2. std::string初始化 std::string hw_copy = hello_world; // 3, 4. std::toupper, std::tolower (示例,不改变字符串) for (char& c : hw_copy) { std::toupper(c); std::tolower(c); } // 5. std::copy (将hello_world拷贝到chars) std::copy(hello_world.begin(), hello_world.end(), chars.begin()); // 6. std::ostream_iterator (输出chars中的字符) std::copy(chars.begin(), chars.end(), std::ostream_iterator<char>(std::cout)); std::cout << std::endl; // 7. std::find (查找'h') auto it = std::find(chars.begin(), chars.end(), 'h'); // 8. std::find_if (查找第一个空格) auto space_it = std::find_if(chars.begin(), chars.end(), [](char c){ return c == ' '; }); // 9. std::all_of (检查是否都是小写) bool all_lower = std::all_of(chars.begin(), chars.end(), [](char c){ return std::islower(c); }); // 10. std::any_of (检查是否有'h') bool has_h = std::any_of(chars.begin(), chars.end(), [](char c){ return c == 'h'; }); // 11. std::none_of (检查是否没有大写字母) bool no_upper = std::none_of(chars.begin(), chars.end(), [](char c){ return std::isupper(c); }); // 12. std::for_each (打印每个字符) std::for_each(chars.begin(), chars.end(), [](char c){ std::cout << c; }); std::cout << std::endl; // 13. std::count (计算'l'的数量) int l_count = std::count(chars.begin(), chars.end(), 'l'); // 14. std::count_if (计算字母的数量) int letter_count = std::count_if(chars.begin(), chars.end(), [](char c){ return std::isalpha(c); }); // 15. std::mismatch (比较两个字符串) auto mismatch_pair = std::mismatch(hello_world.begin(), hello_world.end(), chars.begin()); // 16. std::equal (检查两个字符串是否相等) bool equal = std::equal(hello_world.begin(), hello_world.end(), chars.
//畏惧了,装不下去了~~~^^^_^
-
0
#include <bits/stdc++.h> using namespace std; #define int long long int n,h; const int N = 1e6+10; int a[N]; bool check(int x) { int cnt=0,pre=-1; for(int i=1;i<=n;i++) { if(pre==-1) { pre=a[i]; cnt++; } else if(a[i]-pre>=x) { pre=a[i]; cnt++; } if(cnt>=h) return true; } return false; } signed main(){ cin>>n>>h; for(int i=1;i<=n;i++) cin>>a[i]; sort(a+1,a+n+1); int l=0,r=1e9,ans; while(l<=r) { int mid=l+r>>1; if(check(mid)) { ans=mid; l=mid+1; } else r=mid-1; } cout<<ans<<endl; }
-
0
// #include <bits/stdc++.h> using namespace std; #define int long long int n,h; const int N = 1e6+10; int a[N]; bool check(int x) { int cnt=0,pre=-1; for(int i=1;i<=n;i++) { if(pre==-1) { pre=a[i]; cnt++; } else if(a[i]-pre>=x) { pre=a[i]; cnt++; } if(cnt>=h) return true; } return false; } signed main(){ cin>>n>>h; for(int i=1;i<=n;i++) cin>>a[i]; sort(a+1,a+n+1); int l=0,r=1e9,ans; while(l<=r) { int mid=l+r>>1; if(check(mid)) { ans=mid; l=mid+1; } else r=mid-1; } cout<<ans<<endl; } //
-
0
-
0
#include <bits/stdc++.h> using namespace std; const int N = 1e5+10; int a[N],cnt[N]; int main(){ int n,c;cin>>n>>c; for(int i=1;i<=n;i++) { cin>>a[i]; cnt[a[i]]++; } int res=0; for(int aa=0;aa<100000;aa++) { int b = aa-c; if(b<0) continue; res+=cnt[aa]*cnt[b]; } cout<<res<<endl; return 0;
-
-1
// Core algorithmic facilities -- C++ --
// Copyright (C) 2001-2014 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version.
// This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // http://www.gnu.org/licenses/.
/* *
- Copyright (c) 1994
- Hewlett-Packard Company
- Permission to use, copy, modify, distribute and sell this software
- and its documentation for any purpose is hereby granted without fee,
- provided that the above copyright notice appear in all copies and
- that both that copyright notice and this permission notice appear
- in supporting documentation. Hewlett-Packard Company makes no
- representations about the suitability of this software for any
- purpose. It is provided "as is" without express or implied warranty.
- Copyright (c) 1996-1998
- Silicon Graphics Computer Systems, Inc.
- Permission to use, copy, modify, distribute and sell this software
- and its documentation for any purpose is hereby granted without fee,
- provided that the above copyright notice appear in all copies and
- that both that copyright notice and this permission notice appear
- in supporting documentation. Silicon Graphics makes no
- representations about the suitability of this software for any
- purpose. It is provided "as is" without express or implied warranty. */
/** @file bits/stl_algobase.h
- This is an internal header file, included by other library headers.
- Do not attempt to use it directly. @headername{algorithm} */
#ifndef _STL_ALGOBASE_H #define _STL_ALGOBASE_H 1
#include <bits/c++config.h> #include <bits/functexcept.h> #include <bits/cpp_type_traits.h> #include <ext/type_traits.h> #include <ext/numeric_traits.h> #include <bits/stl_pair.h> #include <bits/stl_iterator_base_types.h> #include <bits/stl_iterator_base_funcs.h> #include <bits/stl_iterator.h> #include <bits/concept_check.h> #include <debug/debug.h> #include <bits/move.h> // For std::swap and _GLIBCXX_MOVE #include <bits/predefined_ops.h>
namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION
#if __cplusplus < 201103L // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a // nutshell, we are partially implementing the resolution of DR 187, // when it's safe, i.e., the value_types are equal. template struct __iter_swap { template<typename _ForwardIterator1, typename _ForwardIterator2> static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; _ValueType1 __tmp = _GLIBCXX_MOVE(*__a); __a = _GLIBCXX_MOVE(__b); *__b = _GLIBCXX_MOVE(__tmp); } };
template<> struct __iter_swap { template<typename _ForwardIterator1, typename _ForwardIterator2> static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { swap(*__a, *__b); } }; #endif
/**
- @brief Swaps the contents of two iterators.
- @ingroup mutating_algorithms
- @param __a An iterator.
- @param __b Another iterator.
- @return Nothing.
- This function swaps the values pointed to by two iterators, not the
- iterators themselves. */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>)
#if __cplusplus < 201103L typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator2>::value_type _ValueType2;
__glibcxx_function_requires(_ConvertibleConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_ConvertibleConcept<_ValueType2, _ValueType1>) typedef typename iterator_traits<_ForwardIterator1>::reference _ReferenceType1; typedef typename iterator_traits<_ForwardIterator2>::reference _ReferenceType2; std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value && __are_same<_ValueType1&, _ReferenceType1>::__value && __are_same<_ValueType2&, _ReferenceType2>::__value>:: iter_swap(__a, __b);
#else swap(*__a, *__b); #endif }
/**
-
@brief Swap the elements of two sequences.
-
@ingroup mutating_algorithms
-
@param __first1 A forward iterator.
-
@param __last1 A forward iterator.
-
@param __first2 A forward iterator.
-
@return An iterator equal to @p first2+(last1-first1).
-
Swaps each element in the range @p [first1,last1) with the
-
corresponding element in the range @p [first2,(last1-first1)).
-
The ranges must not overlap. */ template<typename _ForwardIterator1, typename _ForwardIterator2> _ForwardIterator2 swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>) __glibcxx_requires_valid_range(__first1, __last1);
for (; __first1 != __last1; ++__first1, ++__first2) std::iter_swap(__first1, __first2); return __first2; }
/**
- @brief This does what you think it does.
- @ingroup sorting_algorithms
- @param __a A thing of arbitrary type.
- @param __b Another thing of arbitrary type.
- @return The lesser of the parameters.
- This is the simple classic generic implementation. It will work on
- temporary expressions, since they are only evaluated once, unlike a
- preprocessor macro. */ template inline const _Tp& min(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __b < __a ? __b : __a; if (__b < __a) return __b; return __a; }
/**
- @brief This does what you think it does.
- @ingroup sorting_algorithms
- @param __a A thing of arbitrary type.
- @param __b Another thing of arbitrary type.
- @return The greater of the parameters.
- This is the simple classic generic implementation. It will work on
- temporary expressions, since they are only evaluated once, unlike a
- preprocessor macro. */ template inline const _Tp& max(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __a < __b ? __b : __a; if (__a < __b) return __b; return __a; }
/**
- @brief This does what you think it does.
- @ingroup sorting_algorithms
- @param __a A thing of arbitrary type.
- @param __b Another thing of arbitrary type.
- @param __comp A @link comparison_functors comparison functor@endlink.
- @return The lesser of the parameters.
- This will work on temporary expressions, since they are only evaluated
- once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__b, __a) ? __b : __a; if (__comp(__b, __a)) return __b; return __a; }
/**
- @brief This does what you think it does.
- @ingroup sorting_algorithms
- @param __a A thing of arbitrary type.
- @param __b Another thing of arbitrary type.
- @param __comp A @link comparison_functors comparison functor@endlink.
- @return The greater of the parameters.
- This will work on temporary expressions, since they are only evaluated
- once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__a, __b) ? __b : __a; if (__comp(__a, __b)) return __b; return __a; }
// If _Iterator is a __normal_iterator return its base (a plain pointer, // normally) otherwise return it untouched. See copy, fill, ... template struct _Niter_base : _Iter_base<_Iterator, __is_normal_iterator<_Iterator>::__value> { };
template inline typename _Niter_base<_Iterator>::iterator_type __niter_base(_Iterator __it) { return std::_Niter_base<_Iterator>::_S_base(__it); }
// Likewise, for move_iterator. template struct _Miter_base : _Iter_base<_Iterator, __is_move_iterator<_Iterator>::__value> { };
template inline typename _Miter_base<_Iterator>::iterator_type __miter_base(_Iterator __it) { return std::_Miter_base<_Iterator>::_S_base(__it); }
// All of these auxiliary structs serve two purposes. (1) Replace // calls to copy with memmove whenever possible. (Memmove, not memcpy, // because the input and output ranges are permitted to overlap.) // (2) If we're using random access iterators, then write the loop as // a for loop with an explicit count.
template<bool, bool, typename> struct __copy_move { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } };
#if __cplusplus >= 201103L template struct __copy_move<true, false, _Category> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) __result = std::move(__first); return __result; } }; #endif
template<> struct __copy_move<false, false, random_access_iterator_tag> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } };
#if __cplusplus >= 201103L template<> struct __copy_move<true, false, random_access_iterator_tag> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { __result = std::move(__first); ++__first; ++__result; } return __result; } }; #endif
template struct __copy_move<_IsMove, true, random_access_iterator_tag> { template static _Tp* __copy_m(const _Tp* __first, const _Tp* __last, _Tp* __result) { #if __cplusplus >= 201103L // trivial types can have deleted assignment static_assert( is_copy_assignable<_Tp>::value, "type is not assignable" ); #endif const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result, __first, sizeof(_Tp) * _Num); return __result + _Num; } };
template<bool _IsMove, typename _II, typename _OI> inline _OI __copy_move_a(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::value_type _ValueTypeI; typedef typename iterator_traits<_OI>::value_type _ValueTypeO; typedef typename iterator_traits<_II>::iterator_category _Category; const bool __simple = (__is_trivial(_ValueTypeI) && __is_pointer<_II>::__value && __is_pointer<_OI>::__value && __are_same<_ValueTypeI, _ValueTypeO>::__value);
return std::__copy_move<_IsMove, __simple, _Category>::__copy_m(__first, __last, __result); }
// Helpers for streambuf iterators (either istream or ostream). // NB: avoid including , relatively large. template struct char_traits;
template<typename _CharT, typename _Traits> class istreambuf_iterator;
template<typename _CharT, typename _Traits> class ostreambuf_iterator;
template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(_CharT*, _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >);
template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(const _CharT*, const _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >);
template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type __copy_move_a2(istreambuf_iterator<_CharT, char_traits<_CharT> >, istreambuf_iterator<_CharT, char_traits<_CharT> >, _CharT*);
template<bool _IsMove, typename _II, typename _OI> inline _OI __copy_move_a2(_II __first, _II __last, _OI __result) { return _OI(std::__copy_move_a<_IsMove>(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); }
/**
-
@brief Copies the range [first,last) into result.
-
@ingroup mutating_algorithms
-
@param __first An input iterator.
-
@param __last An input iterator.
-
@param __result An output iterator.
-
@return result + (first - last)
-
This inline function will boil down to a call to @c memmove whenever
-
possible. Failing that, if random access iterators are passed, then the
-
loop count will be known (and therefore a candidate for compiler
-
optimizations such as unrolling). Result may not be contained within
-
[first,last); the copy_backward function should be used instead.
-
Note that the end of the output range is permitted to be contained
-
within [first,last). */ template<typename _II, typename _OI> inline _OI copy(_II __first, _II __last, _OI __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II>) __glibcxx_function_requires(_OutputIteratorConcept<_OI, typename iterator_traits<_II>::value_type>) __glibcxx_requires_valid_range(__first, __last);
return (std::__copy_move_a2<__is_move_iterator<_II>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); }
#if __cplusplus >= 201103L /**
-
@brief Moves the range [first,last) into result.
-
@ingroup mutating_algorithms
-
@param __first An input iterator.
-
@param __last An input iterator.
-
@param __result An output iterator.
-
@return result + (first - last)
-
This inline function will boil down to a call to @c memmove whenever
-
possible. Failing that, if random access iterators are passed, then the
-
loop count will be known (and therefore a candidate for compiler
-
optimizations such as unrolling). Result may not be contained within
-
[first,last); the move_backward function should be used instead.
-
Note that the end of the output range is permitted to be contained
-
within [first,last). */ template<typename _II, typename _OI> inline _OI move(_II __first, _II __last, _OI __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II>) __glibcxx_function_requires(_OutputIteratorConcept<_OI, typename iterator_traits<_II>::value_type>) __glibcxx_requires_valid_range(__first, __last);
return std::__copy_move_a2(std::__miter_base(__first), std::__miter_base(__last), __result); }
#define _GLIBCXX_MOVE3(_Tp, _Up, _Vp) std::move(_Tp, _Up, _Vp) #else #define _GLIBCXX_MOVE3(_Tp, _Up, _Vp) std::copy(_Tp, _Up, _Vp) #endif
template<bool, bool, typename> struct __copy_move_backward { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) *--__result = *--__last; return __result; } };
#if __cplusplus >= 201103L template struct __copy_move_backward<true, false, _Category> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) --__result = std::move(--__last); return __result; } }; #endif
template<> struct __copy_move_backward<false, false, random_access_iterator_tag> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } };
#if __cplusplus >= 201103L template<> struct __copy_move_backward<true, false, random_access_iterator_tag> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) --__result = std::move(--__last); return __result; } }; #endif
template struct __copy_move_backward<_IsMove, true, random_access_iterator_tag> { template static _Tp* __copy_move_b(const _Tp* __first, const _Tp* __last, _Tp* __result) { #if __cplusplus >= 201103L // trivial types can have deleted assignment static_assert( is_copy_assignable<_Tp>::value, "type is not assignable" ); #endif const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } };
template<bool _IsMove, typename _BI1, typename _BI2> inline _BI2 __copy_move_backward_a(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename iterator_traits<_BI1>::value_type _ValueType1; typedef typename iterator_traits<_BI2>::value_type _ValueType2; typedef typename iterator_traits<_BI1>::iterator_category _Category; const bool __simple = (__is_trivial(_ValueType1) && __is_pointer<_BI1>::__value && __is_pointer<_BI2>::__value && __are_same<_ValueType1, _ValueType2>::__value);
return std::__copy_move_backward<_IsMove, __simple, _Category>::__copy_move_b(__first, __last, __result); }
template<bool _IsMove, typename _BI1, typename _BI2> inline _BI2 __copy_move_backward_a2(_BI1 __first, _BI1 __last, _BI2 __result) { return _BI2(std::__copy_move_backward_a<_IsMove> (std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); }
/**
-
@brief Copies the range [first,last) into result.
-
@ingroup mutating_algorithms
-
@param __first A bidirectional iterator.
-
@param __last A bidirectional iterator.
-
@param __result A bidirectional iterator.
-
@return result - (first - last)
-
The function has the same effect as copy, but starts at the end of the
-
range and works its way to the start, returning the start of the result.
-
This inline function will boil down to a call to @c memmove whenever
-
possible. Failing that, if random access iterators are passed, then the
-
loop count will be known (and therefore a candidate for compiler
-
optimizations such as unrolling).
-
Result may not be in the range (first,last]. Use copy instead. Note
-
that the start of the output range may overlap [first,last). */ template<typename _BI1, typename _BI2> inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last);
return (std::__copy_move_backward_a2<__is_move_iterator<_BI1>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); }
#if __cplusplus >= 201103L /**
-
@brief Moves the range [first,last) into result.
-
@ingroup mutating_algorithms
-
@param __first A bidirectional iterator.
-
@param __last A bidirectional iterator.
-
@param __result A bidirectional iterator.
-
@return result - (first - last)
-
The function has the same effect as move, but starts at the end of the
-
range and works its way to the start, returning the start of the result.
-
This inline function will boil down to a call to @c memmove whenever
-
possible. Failing that, if random access iterators are passed, then the
-
loop count will be known (and therefore a candidate for compiler
-
optimizations such as unrolling).
-
Result may not be in the range (first,last]. Use move instead. Note
-
that the start of the output range may overlap [first,last). */ template<typename _BI1, typename _BI2> inline _BI2 move_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last);
return std::__copy_move_backward_a2(std::__miter_base(__first), std::__miter_base(__last), __result); }
#define _GLIBCXX_MOVE_BACKWARD3(_Tp, _Up, _Vp) std::move_backward(_Tp, _Up, _Vp) #else #define _GLIBCXX_MOVE_BACKWARD3(_Tp, _Up, _Vp) std::copy_backward(_Tp, _Up, _Vp) #endif
template<typename _ForwardIterator, typename _Tp> inline typename __gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { for (; __first != __last; ++__first) *__first = __value; }
template<typename _ForwardIterator, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { const _Tp __tmp = __value; for (; __first != __last; ++__first) *__first = __tmp; }
// Specialization: for char types we can use memset. template inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, void>::__type __fill_a(_Tp* __first, _Tp* __last, const _Tp& __c) { const _Tp __tmp = __c; __builtin_memset(__first, static_cast(__tmp), __last - __first); }
/**
-
@brief Fills the range [first,last) with copies of value.
-
@ingroup mutating_algorithms
-
@param __first A forward iterator.
-
@param __last A forward iterator.
-
@param __value A reference-to-const of arbitrary type.
-
@return Nothing.
-
This function fills a range with copies of the same value. For char
-
types filling contiguous areas of memory, this becomes an inline call
-
to @c memset or @c wmemset. */ template<typename _ForwardIterator, typename _Tp> inline void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __last);
std::__fill_a(std::__niter_base(__first), std::__niter_base(__last), __value); }
template<typename _OutputIterator, typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __value; return __first; }
template<typename _OutputIterator, typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { const _Tp __tmp = __value; for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __tmp; return __first; }
template<typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, _Tp*>::__type __fill_n_a(_Tp* __first, _Size __n, const _Tp& __c) { std::__fill_a(__first, __first + __n, __c); return __first + __n; }
/**
-
@brief Fills the range [first,first+n) with copies of value.
-
@ingroup mutating_algorithms
-
@param __first An output iterator.
-
@param __n The count of copies to perform.
-
@param __value A reference-to-const of arbitrary type.
-
@return The iterator at first+n.
-
This function fills a range with copies of the same value. For char
-
types filling contiguous areas of memory, this becomes an inline call
-
to @c memset or @ wmemset.
-
_GLIBCXX_RESOLVE_LIB_DEFECTS
-
DR 865. More algorithms that throw away information */ template<typename _OI, typename _Size, typename _Tp> inline _OI fill_n(_OI __first, _Size __n, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OI, _Tp>)
return _OI(std::__fill_n_a(std::__niter_base(__first), __n, __value)); }
template struct __equal { template<typename _II1, typename _II2> static bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } };
template<> struct __equal { template static bool equal(const _Tp* __first1, const _Tp* __last1, const _Tp* __first2) { return !__builtin_memcmp(__first1, __first2, sizeof(_Tp) * (__last1 - __first1)); } };
template<typename _II1, typename _II2> inline bool __equal_aux(_II1 __first1, _II1 __last1, _II2 __first2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = ((__is_integer<_ValueType1>::__value || __is_pointer<_ValueType1>::__value) && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value && __are_same<_ValueType1, _ValueType2>::__value);
return std::__equal<__simple>::equal(__first1, __last1, __first2); }
template<typename, typename> struct __lc_rai { template<typename _II1, typename _II2> static _II1 __newlast1(_II1, _II1 __last1, _II2, _II2) { return __last1; }
template<typename _II> static bool __cnd2(_II __first, _II __last) { return __first != __last; } };
template<> struct __lc_rai<random_access_iterator_tag, random_access_iterator_tag> { template<typename _RAI1, typename _RAI2> static _RAI1 __newlast1(_RAI1 __first1, _RAI1 __last1, _RAI2 __first2, _RAI2 __last2) { const typename iterator_traits<_RAI1>::difference_type __diff1 = __last1 - __first1; const typename iterator_traits<_RAI2>::difference_type __diff2 = __last2 - __first2; return __diff2 < __diff1 ? __first1 + __diff2 : __last1; }
template<typename _RAI> static bool __cnd2(_RAI, _RAI) { return true; } };
template<typename _II1, typename _II2, typename _Compare> bool __lexicographical_compare_impl(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp) { typedef typename iterator_traits<_II1>::iterator_category _Category1; typedef typename iterator_traits<_II2>::iterator_category _Category2; typedef std::__lc_rai<_Category1, _Category2> __rai_type;
__last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2); for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2); ++__first1, ++__first2) { if (__comp(__first1, __first2)) return true; if (__comp(__first2, __first1)) return false; } return __first1 == __last1 && __first2 != __last2; }
template struct __lexicographical_compare { template<typename _II1, typename _II2> static bool __lc(_II1, _II1, _II2, _II2); };
template template<typename _II1, typename _II2> bool __lexicographical_compare<_BoolType>:: __lc(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { return std::__lexicographical_compare_impl(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_less_iter()); }
template<> struct __lexicographical_compare { template<typename _Tp, typename _Up> static bool __lc(const _Tp* __first1, const _Tp* __last1, const _Up* __first2, const _Up* __last2) { const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = __builtin_memcmp(__first1, __first2, std::min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } };
template<typename _II1, typename _II2> inline bool __lexicographical_compare_aux(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = (__is_byte<_ValueType1>::__value && __is_byte<_ValueType2>::__value && !__gnu_cxx::__numeric_traits<_ValueType1>::__is_signed && !__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value);
return std::__lexicographical_compare<__simple>::__lc(__first1, __last1, __first2, __last2); }
template<typename _ForwardIterator, typename _Tp, typename _Compare> _ForwardIterator __lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
_DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; }
/**
-
@brief Finds the first position in which @a val could be inserted
-
without changing the ordering.
-
@param __first An iterator.
-
@param __last Another iterator.
-
@param __val The search term.
-
@return An iterator pointing to the first element not less
-
than</em> @a val, or end() if every element is less than
-
@a val.
-
@ingroup binary_search_algorithms */ template<typename _ForwardIterator, typename _Tp> inline _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_partitioned_lower(__first, __last, __val);
return std::__lower_bound(__first, __last, __val, __gnu_cxx::__ops::__iter_less_val()); }
/// This is a helper function for the sort routines and for random.tcc. // Precondition: __n > 0. inline _GLIBCXX_CONSTEXPR int __lg(int __n) { return sizeof(int) * CHAR_BIT - 1 - __builtin_clz(__n); }
inline _GLIBCXX_CONSTEXPR unsigned __lg(unsigned __n) { return sizeof(int) * CHAR_BIT - 1 - __builtin_clz(__n); }
inline _GLIBCXX_CONSTEXPR long __lg(long __n) { return sizeof(long) * CHAR_BIT - 1 - __builtin_clzl(__n); }
inline _GLIBCXX_CONSTEXPR unsigned long __lg(unsigned long __n) { return sizeof(long) * CHAR_BIT - 1 - __builtin_clzl(__n); }
inline _GLIBCXX_CONSTEXPR long long __lg(long long __n) { return sizeof(long long) * CHAR_BIT - 1 - __builtin_clzll(__n); }
inline _GLIBCXX_CONSTEXPR unsigned long long __lg(unsigned long long __n) { return sizeof(long long) * CHAR_BIT - 1 - __builtin_clzll(__n); }
_GLIBCXX_END_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_ALGO
/**
-
@brief Tests a range for element-wise equality.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@return A boolean true or false.
-
This compares the elements of two ranges using @c == and returns true or
-
false depending on whether all of the corresponding elements of the
-
ranges are equal. */ template<typename _II1, typename _II2> inline bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_II1>::value_type, typename iterator_traits<_II2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1);
return std::__equal_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2)); }
/**
-
@brief Tests a range for element-wise equality.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __binary_pred A binary predicate @link functors
-
functor@endlink.
-
@return A boolean true or false.
-
This compares the elements of two ranges using the binary_pred
-
parameter, and returns true or
-
false depending on whether all of the corresponding elements of the
-
ranges are equal. */ template<typename _IIter1, typename _IIter2, typename _BinaryPredicate> inline bool equal(_IIter1 __first1, _IIter1 __last1, _IIter2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_IIter1>) __glibcxx_function_requires(_InputIteratorConcept<_IIter2>) __glibcxx_requires_valid_range(__first1, __last1);
for (; __first1 != __last1; ++__first1, ++__first2) if (!bool(__binary_pred(*__first1, *__first2))) return false; return true; }
#if __cplusplus > 201103L
#define __cpp_lib_robust_nonmodifying_seq_ops 201304
/**
-
@brief Tests a range for element-wise equality.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __last2 An input iterator.
-
@return A boolean true or false.
-
This compares the elements of two ranges using @c == and returns true or
-
false depending on whether all of the corresponding elements of the
-
ranges are equal. */ template<typename _II1, typename _II2> inline bool equal(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_II1>::value_type, typename iterator_traits<_II2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
using _RATag = random_access_iterator_tag; using _Cat1 = typename iterator_traits<_II1>::iterator_category; using _Cat2 = typename iterator_traits<_II2>::iterator_category; using _RAIters = _and<is_same<_Cat1, _RATag>, is_same<_Cat2, _RATag>>; if (_RAIters()) { auto __d1 = std::distance(__first1, __last1); auto __d2 = std::distance(__first2, __last2); if (__d1 != __d2) return false; return _GLIBCXX_STD_A::equal(__first1, __last1, __first2); }
for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return __first1 == __last1 && __first2 == __last2; }
/**
-
@brief Tests a range for element-wise equality.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __last2 An input iterator.
-
@param __binary_pred A binary predicate @link functors
-
functor@endlink.
-
@return A boolean true or false.
-
This compares the elements of two ranges using the binary_pred
-
parameter, and returns true or
-
false depending on whether all of the corresponding elements of the
-
ranges are equal. */ template<typename _IIter1, typename _IIter2, typename _BinaryPredicate> inline bool equal(_IIter1 __first1, _IIter1 __last1, _IIter2 __first2, _IIter2 __last2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_IIter1>) __glibcxx_function_requires(_InputIteratorConcept<_IIter2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
using _RATag = random_access_iterator_tag; using _Cat1 = typename iterator_traits<_IIter1>::iterator_category; using _Cat2 = typename iterator_traits<_IIter2>::iterator_category; using _RAIters = _and<is_same<_Cat1, _RATag>, is_same<_Cat2, _RATag>>; if (_RAIters()) { auto __d1 = std::distance(__first1, __last1); auto __d2 = std::distance(__first2, __last2); if (__d1 != __d2) return false; return _GLIBCXX_STD_A::equal(__first1, __last1, __first2, __binary_pred); }
for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) if (!bool(__binary_pred(*__first1, *__first2))) return false; return __first1 == __last1 && __first2 == __last2; } #endif
/**
-
@brief Performs @b dictionary comparison on ranges.
-
@ingroup sorting_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __last2 An input iterator.
-
@return A boolean true or false.
-
Returns true if the sequence of elements defined by the range
-
[first1,last1) is lexicographically less than the sequence of elements
-
defined by the range [first2,last2). Returns false otherwise.</em>
-
(Quoted from [25.3.8]/1.) If the iterators are all character pointers,
-
then this is an inline call to @c memcmp. */ template<typename _II1, typename _II2> inline bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { #ifdef _GLIBCXX_CONCEPT_CHECKS // concept requirements typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; #endif __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
return std::__lexicographical_compare_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2), std::__niter_base(__last2)); }
/**
-
@brief Performs @b dictionary comparison on ranges.
-
@ingroup sorting_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __last2 An input iterator.
-
@param __comp A @link comparison_functors comparison functor@endlink.
-
@return A boolean true or false.
-
The same as the four-parameter @c lexicographical_compare, but uses the
-
comp parameter instead of @c <. */ template<typename _II1, typename _II2, typename _Compare> inline bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
return std::__lexicographical_compare_impl (__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__comp)); }
template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> pair<_InputIterator1, _InputIterator2> __mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { while (__first1 != __last1 && __binary_pred(__first1, __first2)) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); }
/**
-
@brief Finds the places in ranges which don't match.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@return A pair of iterators pointing to the first mismatch.
-
This compares the elements of two ranges using @c == and returns a pair
-
of iterators. The first iterator points into the first range, the
-
second iterator points into the second range, and the elements pointed
-
to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1);
return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __gnu_cxx::__ops::__iter_equal_to_iter()); }
/**
-
@brief Finds the places in ranges which don't match.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __binary_pred A binary predicate @link functors
-
functor@endlink.
-
@return A pair of iterators pointing to the first mismatch.
-
This compares the elements of two ranges using the binary_pred
-
parameter, and returns a pair
-
of iterators. The first iterator points into the first range, the
-
second iterator points into the second range, and the elements pointed
-
to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1);
return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred)); }
#if __cplusplus > 201103L
template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> pair<_InputIterator1, _InputIterator2> __mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _BinaryPredicate __binary_pred) { while (__first1 != __last1 && __first2 != __last2 && __binary_pred(__first1, __first2)) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); }
/**
-
@brief Finds the places in ranges which don't match.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __last2 An input iterator.
-
@return A pair of iterators pointing to the first mismatch.
-
This compares the elements of two ranges using @c == and returns a pair
-
of iterators. The first iterator points into the first range, the
-
second iterator points into the second range, and the elements pointed
-
to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_equal_to_iter()); }
/**
-
@brief Finds the places in ranges which don't match.
-
@ingroup non_mutating_algorithms
-
@param __first1 An input iterator.
-
@param __last1 An input iterator.
-
@param __first2 An input iterator.
-
@param __last2 An input iterator.
-
@param __binary_pred A binary predicate @link functors
-
functor@endlink.
-
@return A pair of iterators pointing to the first mismatch.
-
This compares the elements of two ranges using the binary_pred
-
parameter, and returns a pair
-
of iterators. The first iterator points into the first range, the
-
second iterator points into the second range, and the elements pointed
-
to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred)); } #endif
_GLIBCXX_END_NAMESPACE_ALGO } // namespace std
// NB: This file is included within many other C++ includes, as a way // of getting the base algorithms. So, make sure that parallel bits // come in too if requested. #ifdef _GLIBCXX_PARALLEL
include <parallel/algobase.h>
#endif
#endif
-
-1
#include<bits/stdc++.h> using namespace std; const int N=1e5+10; int a[N];
int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; int>>x; cin>>x; int l=1,r=n,ans=-1; } while(l<=r){ int mid=l+r>>1; if(a[mid]>=x){ ans=mid; r=mid-1; } else l=mid+1; } cout<<ans<<endl; }
``` `````` `````````
-
-1
/* f的参数1是分解的数,参数2是分解的 最小值 题目要求1<a1≤a2≤a3≤…≤an,先观察一个例子,如果要分解20 f(20,2)=1+f(10,2)+f(5,4) f(10,2)=1+f(5,2); f(5,2)=1; f(5,4)=1; */ #include <bits/stdc++.h> using namespace std; int f(int n,int min){ int sum=1;//本身包含一种 for(int j=min;j*j<=n;j++){//满足 1<a1≤a2≤a3≤…≤an 到n的开平方 if(n%j==0){//j是n的因数,可以分解 sum=sum+f(n/j,j); } } return sum; } int main(){ int n,nn; cin>>n; while(n--){ cin>>nn; cout<<f(nn,2)<<endl; } return 0; }
-
-1
#include<bits/stdc++.h> using namespace std; int p[200010]; bool f(int a){ for(int i=2;i<=a/i;i++){ // O(sqrt(n)) O(n) if(a%i==0) { return 0; } } return 1; } int main(){ int n; cin>>n; //cout << f(7) << endl; for(int i = 2; i <= 200000; i++) { if(f(i)) p[i]++; } for(int i=2;i<=n ;i++){ if(!p[i]) continue; for(int j=i;j<=n - i - 2;j++){ if(!p[j] || !p[n - i - j]) continue; cout << i << ' ' << j << ' ' << n - i - j << endl; return 0; } } }
-
-1
#include <bits/stdc++.h> int a[10][110]; int res[1100]; using namespace std; int main(){ int n;cin>>n; int mx=0; for(int i=1;i<=n;i++){ cin>>res[i]; int x=res[i]; int c=0; while(x){ x/=10; c++; } mx=max(mx,c); } int cc=1; for(int i=1;i<=mx;i++){ for(int j=1;j<=n;j++){ int x=res[j]; x/=cc; a[x%10][0]++; a[x%10][a[x%10][0]] = res[j]; } int idx=1; for(int j=0;j<10;j++){ for(int k=1;k<=a[j][0];k++){ res[idx]=a[j][k]; idx++; } a[j][0]=0; } cc*=10; } for(int i=1;i<=n;i++) cout<<res[i]<<" "; }
-
-2
#include<bits/stdc++.h> using namespace std; const long long N = 1e8+11; bool vis[N]; int p[N],idx; void init(long long N) { for(long long i=2;i<N;i++) { if(!vis[i]) { p[idx++]=i; } for(int j=0;j<idx&&1llip[j]<N;j++) { vis[p[j]*i]=true; if(i%p[j]==0) break; } } } int main() { std::ios::sync_with_stdio(0); long long n;cin>>n; long long t;cin>>t; init(N); while(t--){ long long x;cin>>x; cout<<p[x-1]<<"\n"; } return 0; }
-
-2
#include<bits/stdc++.h> using namespace std; const long long N = 1e8+11; bool vis[N]; int p[N],idx; void init(long long N) { for(long long i=2;i<N;i++) { if(!vis[i]) { p[idx++]=i; } for(int j=0;j<idx&&1llip[j]<N;j++) { vis[p[j]*i]=true; if(i%p[j]==0) break; } } } int main() { std::ios::sync_with_stdio(0); long long n;cin>>n; long long t;cin>>t; init(N); while(t--){ long long x;cin>>x; cout<<p[x-1]<<"\n"; } return 0; }
-
-3
#include<bits/stdc++.h> using namespace std; int cnt[26]; int main(){ string s; getline(cin,s); for(int i=0;i<s.size();i++){ if(s[i]>='a'&&s[i]<='z'){ s[i]-=32; } if(s[i]>='A'&&s[i]<='Z'){ cnt[s[i]-'A']++; } } for(int i=0;i<26;i++){ cout<<char(i+'A')<<":"; for(int j=1;j<=cnt[i];j++){ cout<<"*"; } cout<<endl; } }
信息
- ID
- 1
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 4
- 标签
- 递交数
- 44
- 已通过
- 21
- 上传者