30 条题解

  • 1
    @ 2024-6-9 11:21:39

    shssbsbsbsbsbsbsbbs

    • 0
      @ 2024-5-12 11:19:00
      #include <bits/stdc++.h>
      using namespace std;
      #define int long long
      int n,h;
      const int N = 1e6+10;
      int a[N];	
      bool check(int x) {
      	int cnt=0,pre=-1;
      	for(int i=1;i<=n;i++) {
      		if(pre==-1) {
      			pre=a[i];
      			cnt++;
      		}
      		else if(a[i]-pre>=x) {
      			pre=a[i];
      			cnt++;
      		}
      		if(cnt>=h) return true;
      	}
      	return false;
      }
      signed main(){
      	cin>>n>>h;
      	for(int i=1;i<=n;i++) cin>>a[i];
      	sort(a+1,a+n+1);
      	int l=0,r=1e9,ans;
      	while(l<=r) {
      		int mid=l+r>>1;
      		if(check(mid)) {
      			ans=mid;
      			l=mid+1;
      		}
      		else r=mid-1;
      	}
      	cout<<ans<<endl;
      }
      
      • 0
        @ 2024-5-12 11:17:39

        // #include <bits/stdc++.h> using namespace std; #define int long long int n,h; const int N = 1e6+10; int a[N]; bool check(int x) { int cnt=0,pre=-1; for(int i=1;i<=n;i++) { if(pre==-1) { pre=a[i]; cnt++; } else if(a[i]-pre>=x) { pre=a[i]; cnt++; } if(cnt>=h) return true; } return false; } signed main(){ cin>>n>>h; for(int i=1;i<=n;i++) cin>>a[i]; sort(a+1,a+n+1); int l=0,r=1e9,ans; while(l<=r) { int mid=l+r>>1; if(check(mid)) { ans=mid; l=mid+1; } else r=mid-1; } cout<<ans<<endl; } //

        • 0
          @ 2024-4-21 10:08:07

          #include <bits/stdc++.h> using namespace std; #define int long long int qpw(int a,int b,int p){ int res=1; while(b){ if(b&1){ res=resa%p; } b>>=1; a=aa%p; } return res; } signed main() { int a,b,p;cin>>a>>b>>p; cout<<a<<"^"<<b<<" "<<"mod"<<" "<<p<<"="; cout<<qpw(a,b,p)<<endl; }

          • 0
            @ 2024-3-10 11:00:50

            #include <bits/stdc++.h> using namespace std; const int N = 1e5+10; int a[N],cnt[N]; int main(){ int n,c;cin>>n>>c; for(int i=1;i<=n;i++) { cin>>a[i]; cnt[a[i]]++; } int res=0; for(int aa=0;aa<100000;aa++) { int b = aa-c; if(b<0) continue; res+=cnt[aa]*cnt[b]; } cout<<res<<endl; return 0;

            • -1
              @ 2024-6-9 10:10:19

              // Core algorithmic facilities -- C++ --

              // Copyright (C) 2001-2014 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version.

              // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details.

              // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation.

              // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // http://www.gnu.org/licenses/.

              /* *

              • Copyright (c) 1994
              • Hewlett-Packard Company
              • Permission to use, copy, modify, distribute and sell this software
              • and its documentation for any purpose is hereby granted without fee,
              • provided that the above copyright notice appear in all copies and
              • that both that copyright notice and this permission notice appear
              • in supporting documentation. Hewlett-Packard Company makes no
              • representations about the suitability of this software for any
              • purpose. It is provided "as is" without express or implied warranty.
              • Copyright (c) 1996-1998
              • Silicon Graphics Computer Systems, Inc.
              • Permission to use, copy, modify, distribute and sell this software
              • and its documentation for any purpose is hereby granted without fee,
              • provided that the above copyright notice appear in all copies and
              • that both that copyright notice and this permission notice appear
              • in supporting documentation. Silicon Graphics makes no
              • representations about the suitability of this software for any
              • purpose. It is provided "as is" without express or implied warranty. */

              /** @file bits/stl_algobase.h

              • This is an internal header file, included by other library headers.
              • Do not attempt to use it directly. @headername{algorithm} */

              #ifndef _STL_ALGOBASE_H #define _STL_ALGOBASE_H 1

              #include <bits/c++config.h> #include <bits/functexcept.h> #include <bits/cpp_type_traits.h> #include <ext/type_traits.h> #include <ext/numeric_traits.h> #include <bits/stl_pair.h> #include <bits/stl_iterator_base_types.h> #include <bits/stl_iterator_base_funcs.h> #include <bits/stl_iterator.h> #include <bits/concept_check.h> #include <debug/debug.h> #include <bits/move.h> // For std::swap and _GLIBCXX_MOVE #include <bits/predefined_ops.h>

              namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION

              #if __cplusplus < 201103L // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a // nutshell, we are partially implementing the resolution of DR 187, // when it's safe, i.e., the value_types are equal. template struct __iter_swap { template<typename _ForwardIterator1, typename _ForwardIterator2> static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; _ValueType1 __tmp = _GLIBCXX_MOVE(*__a); __a = _GLIBCXX_MOVE(__b); *__b = _GLIBCXX_MOVE(__tmp); } };

              template<> struct __iter_swap { template<typename _ForwardIterator1, typename _ForwardIterator2> static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { swap(*__a, *__b); } }; #endif

              /**

              • @brief Swaps the contents of two iterators.
              • @ingroup mutating_algorithms
              • @param __a An iterator.
              • @param __b Another iterator.
              • @return Nothing.
              • This function swaps the values pointed to by two iterators, not the
              • iterators themselves. */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>)

              #if __cplusplus < 201103L typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator2>::value_type _ValueType2;

                __glibcxx_function_requires(_ConvertibleConcept<_ValueType1,
              			  _ValueType2>)
                __glibcxx_function_requires(_ConvertibleConcept<_ValueType2,
              			  _ValueType1>)
              
                typedef typename iterator_traits<_ForwardIterator1>::reference
              _ReferenceType1;
                typedef typename iterator_traits<_ForwardIterator2>::reference
              _ReferenceType2;
                std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value
              && __are_same<_ValueType1&, _ReferenceType1>::__value
              && __are_same<_ValueType2&, _ReferenceType2>::__value>::
              iter_swap(__a, __b);
              

              #else swap(*__a, *__b); #endif }

              /**

              • @brief Swap the elements of two sequences.

              • @ingroup mutating_algorithms

              • @param __first1 A forward iterator.

              • @param __last1 A forward iterator.

              • @param __first2 A forward iterator.

              • @return An iterator equal to @p first2+(last1-first1).

              • Swaps each element in the range @p [first1,last1) with the

              • corresponding element in the range @p [first2,(last1-first1)).

              • The ranges must not overlap. */ template<typename _ForwardIterator1, typename _ForwardIterator2> _ForwardIterator2 swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>) __glibcxx_requires_valid_range(__first1, __last1);

                for (; __first1 != __last1; ++__first1, ++__first2) std::iter_swap(__first1, __first2); return __first2; }

              /**

              • @brief This does what you think it does.
              • @ingroup sorting_algorithms
              • @param __a A thing of arbitrary type.
              • @param __b Another thing of arbitrary type.
              • @return The lesser of the parameters.
              • This is the simple classic generic implementation. It will work on
              • temporary expressions, since they are only evaluated once, unlike a
              • preprocessor macro. */ template inline const _Tp& min(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __b < __a ? __b : __a; if (__b < __a) return __b; return __a; }

              /**

              • @brief This does what you think it does.
              • @ingroup sorting_algorithms
              • @param __a A thing of arbitrary type.
              • @param __b Another thing of arbitrary type.
              • @return The greater of the parameters.
              • This is the simple classic generic implementation. It will work on
              • temporary expressions, since they are only evaluated once, unlike a
              • preprocessor macro. */ template inline const _Tp& max(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __a < __b ? __b : __a; if (__a < __b) return __b; return __a; }

              /**

              • @brief This does what you think it does.
              • @ingroup sorting_algorithms
              • @param __a A thing of arbitrary type.
              • @param __b Another thing of arbitrary type.
              • @param __comp A @link comparison_functors comparison functor@endlink.
              • @return The lesser of the parameters.
              • This will work on temporary expressions, since they are only evaluated
              • once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__b, __a) ? __b : __a; if (__comp(__b, __a)) return __b; return __a; }

              /**

              • @brief This does what you think it does.
              • @ingroup sorting_algorithms
              • @param __a A thing of arbitrary type.
              • @param __b Another thing of arbitrary type.
              • @param __comp A @link comparison_functors comparison functor@endlink.
              • @return The greater of the parameters.
              • This will work on temporary expressions, since they are only evaluated
              • once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__a, __b) ? __b : __a; if (__comp(__a, __b)) return __b; return __a; }

              // If _Iterator is a __normal_iterator return its base (a plain pointer, // normally) otherwise return it untouched. See copy, fill, ... template struct _Niter_base : _Iter_base<_Iterator, __is_normal_iterator<_Iterator>::__value> { };

              template inline typename _Niter_base<_Iterator>::iterator_type __niter_base(_Iterator __it) { return std::_Niter_base<_Iterator>::_S_base(__it); }

              // Likewise, for move_iterator. template struct _Miter_base : _Iter_base<_Iterator, __is_move_iterator<_Iterator>::__value> { };

              template inline typename _Miter_base<_Iterator>::iterator_type __miter_base(_Iterator __it) { return std::_Miter_base<_Iterator>::_S_base(__it); }

              // All of these auxiliary structs serve two purposes. (1) Replace // calls to copy with memmove whenever possible. (Memmove, not memcpy, // because the input and output ranges are permitted to overlap.) // (2) If we're using random access iterators, then write the loop as // a for loop with an explicit count.

              template<bool, bool, typename> struct __copy_move { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } };

              #if __cplusplus >= 201103L template struct __copy_move<true, false, _Category> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) __result = std::move(__first); return __result; } }; #endif

              template<> struct __copy_move<false, false, random_access_iterator_tag> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } };

              #if __cplusplus >= 201103L template<> struct __copy_move<true, false, random_access_iterator_tag> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { __result = std::move(__first); ++__first; ++__result; } return __result; } }; #endif

              template struct __copy_move<_IsMove, true, random_access_iterator_tag> { template static _Tp* __copy_m(const _Tp* __first, const _Tp* __last, _Tp* __result) { #if __cplusplus >= 201103L // trivial types can have deleted assignment static_assert( is_copy_assignable<_Tp>::value, "type is not assignable" ); #endif const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result, __first, sizeof(_Tp) * _Num); return __result + _Num; } };

              template<bool _IsMove, typename _II, typename _OI> inline _OI __copy_move_a(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::value_type _ValueTypeI; typedef typename iterator_traits<_OI>::value_type _ValueTypeO; typedef typename iterator_traits<_II>::iterator_category _Category; const bool __simple = (__is_trivial(_ValueTypeI) && __is_pointer<_II>::__value && __is_pointer<_OI>::__value && __are_same<_ValueTypeI, _ValueTypeO>::__value);

                return std::__copy_move<_IsMove, __simple,
                                    _Category>::__copy_m(__first, __last, __result);
              }
              

              // Helpers for streambuf iterators (either istream or ostream). // NB: avoid including , relatively large. template struct char_traits;

              template<typename _CharT, typename _Traits> class istreambuf_iterator;

              template<typename _CharT, typename _Traits> class ostreambuf_iterator;

              template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(_CharT*, _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >);

              template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(const _CharT*, const _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >);

              template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type __copy_move_a2(istreambuf_iterator<_CharT, char_traits<_CharT> >, istreambuf_iterator<_CharT, char_traits<_CharT> >, _CharT*);

              template<bool _IsMove, typename _II, typename _OI> inline _OI __copy_move_a2(_II __first, _II __last, _OI __result) { return _OI(std::__copy_move_a<_IsMove>(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); }

              /**

              • @brief Copies the range [first,last) into result.

              • @ingroup mutating_algorithms

              • @param __first An input iterator.

              • @param __last An input iterator.

              • @param __result An output iterator.

              • @return result + (first - last)

              • This inline function will boil down to a call to @c memmove whenever

              • possible. Failing that, if random access iterators are passed, then the

              • loop count will be known (and therefore a candidate for compiler

              • optimizations such as unrolling). Result may not be contained within

              • [first,last); the copy_backward function should be used instead.

              • Note that the end of the output range is permitted to be contained

              • within [first,last). */ template<typename _II, typename _OI> inline _OI copy(_II __first, _II __last, _OI __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II>) __glibcxx_function_requires(_OutputIteratorConcept<_OI, typename iterator_traits<_II>::value_type>) __glibcxx_requires_valid_range(__first, __last);

                return (std::__copy_move_a2<__is_move_iterator<_II>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); }

              #if __cplusplus >= 201103L /**

              • @brief Moves the range [first,last) into result.

              • @ingroup mutating_algorithms

              • @param __first An input iterator.

              • @param __last An input iterator.

              • @param __result An output iterator.

              • @return result + (first - last)

              • This inline function will boil down to a call to @c memmove whenever

              • possible. Failing that, if random access iterators are passed, then the

              • loop count will be known (and therefore a candidate for compiler

              • optimizations such as unrolling). Result may not be contained within

              • [first,last); the move_backward function should be used instead.

              • Note that the end of the output range is permitted to be contained

              • within [first,last). */ template<typename _II, typename _OI> inline _OI move(_II __first, _II __last, _OI __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II>) __glibcxx_function_requires(_OutputIteratorConcept<_OI, typename iterator_traits<_II>::value_type>) __glibcxx_requires_valid_range(__first, __last);

                return std::__copy_move_a2(std::__miter_base(__first), std::__miter_base(__last), __result); }

              #define _GLIBCXX_MOVE3(_Tp, _Up, _Vp) std::move(_Tp, _Up, _Vp) #else #define _GLIBCXX_MOVE3(_Tp, _Up, _Vp) std::copy(_Tp, _Up, _Vp) #endif

              template<bool, bool, typename> struct __copy_move_backward { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) *--__result = *--__last; return __result; } };

              #if __cplusplus >= 201103L template struct __copy_move_backward<true, false, _Category> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) --__result = std::move(--__last); return __result; } }; #endif

              template<> struct __copy_move_backward<false, false, random_access_iterator_tag> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } };

              #if __cplusplus >= 201103L template<> struct __copy_move_backward<true, false, random_access_iterator_tag> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) --__result = std::move(--__last); return __result; } }; #endif

              template struct __copy_move_backward<_IsMove, true, random_access_iterator_tag> { template static _Tp* __copy_move_b(const _Tp* __first, const _Tp* __last, _Tp* __result) { #if __cplusplus >= 201103L // trivial types can have deleted assignment static_assert( is_copy_assignable<_Tp>::value, "type is not assignable" ); #endif const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } };

              template<bool _IsMove, typename _BI1, typename _BI2> inline _BI2 __copy_move_backward_a(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename iterator_traits<_BI1>::value_type _ValueType1; typedef typename iterator_traits<_BI2>::value_type _ValueType2; typedef typename iterator_traits<_BI1>::iterator_category _Category; const bool __simple = (__is_trivial(_ValueType1) && __is_pointer<_BI1>::__value && __is_pointer<_BI2>::__value && __are_same<_ValueType1, _ValueType2>::__value);

                return std::__copy_move_backward<_IsMove, __simple,
                                             _Category>::__copy_move_b(__first,
              							 __last,
              							 __result);
              }
              

              template<bool _IsMove, typename _BI1, typename _BI2> inline _BI2 __copy_move_backward_a2(_BI1 __first, _BI1 __last, _BI2 __result) { return _BI2(std::__copy_move_backward_a<_IsMove> (std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); }

              /**

              • @brief Copies the range [first,last) into result.

              • @ingroup mutating_algorithms

              • @param __first A bidirectional iterator.

              • @param __last A bidirectional iterator.

              • @param __result A bidirectional iterator.

              • @return result - (first - last)

              • The function has the same effect as copy, but starts at the end of the

              • range and works its way to the start, returning the start of the result.

              • This inline function will boil down to a call to @c memmove whenever

              • possible. Failing that, if random access iterators are passed, then the

              • loop count will be known (and therefore a candidate for compiler

              • optimizations such as unrolling).

              • Result may not be in the range (first,last]. Use copy instead. Note

              • that the start of the output range may overlap [first,last). */ template<typename _BI1, typename _BI2> inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last);

                return (std::__copy_move_backward_a2<__is_move_iterator<_BI1>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); }

              #if __cplusplus >= 201103L /**

              • @brief Moves the range [first,last) into result.

              • @ingroup mutating_algorithms

              • @param __first A bidirectional iterator.

              • @param __last A bidirectional iterator.

              • @param __result A bidirectional iterator.

              • @return result - (first - last)

              • The function has the same effect as move, but starts at the end of the

              • range and works its way to the start, returning the start of the result.

              • This inline function will boil down to a call to @c memmove whenever

              • possible. Failing that, if random access iterators are passed, then the

              • loop count will be known (and therefore a candidate for compiler

              • optimizations such as unrolling).

              • Result may not be in the range (first,last]. Use move instead. Note

              • that the start of the output range may overlap [first,last). */ template<typename _BI1, typename _BI2> inline _BI2 move_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last);

                return std::__copy_move_backward_a2(std::__miter_base(__first), std::__miter_base(__last), __result); }

              #define _GLIBCXX_MOVE_BACKWARD3(_Tp, _Up, _Vp) std::move_backward(_Tp, _Up, _Vp) #else #define _GLIBCXX_MOVE_BACKWARD3(_Tp, _Up, _Vp) std::copy_backward(_Tp, _Up, _Vp) #endif

              template<typename _ForwardIterator, typename _Tp> inline typename __gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { for (; __first != __last; ++__first) *__first = __value; }

              template<typename _ForwardIterator, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { const _Tp __tmp = __value; for (; __first != __last; ++__first) *__first = __tmp; }

              // Specialization: for char types we can use memset. template inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, void>::__type __fill_a(_Tp* __first, _Tp* __last, const _Tp& __c) { const _Tp __tmp = __c; __builtin_memset(__first, static_cast(__tmp), __last - __first); }

              /**

              • @brief Fills the range [first,last) with copies of value.

              • @ingroup mutating_algorithms

              • @param __first A forward iterator.

              • @param __last A forward iterator.

              • @param __value A reference-to-const of arbitrary type.

              • @return Nothing.

              • This function fills a range with copies of the same value. For char

              • types filling contiguous areas of memory, this becomes an inline call

              • to @c memset or @c wmemset. */ template<typename _ForwardIterator, typename _Tp> inline void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __last);

                std::__fill_a(std::__niter_base(__first), std::__niter_base(__last), __value); }

              template<typename _OutputIterator, typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __value; return __first; }

              template<typename _OutputIterator, typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { const _Tp __tmp = __value; for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __tmp; return __first; }

              template<typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, _Tp*>::__type __fill_n_a(_Tp* __first, _Size __n, const _Tp& __c) { std::__fill_a(__first, __first + __n, __c); return __first + __n; }

              /**

              • @brief Fills the range [first,first+n) with copies of value.

              • @ingroup mutating_algorithms

              • @param __first An output iterator.

              • @param __n The count of copies to perform.

              • @param __value A reference-to-const of arbitrary type.

              • @return The iterator at first+n.

              • This function fills a range with copies of the same value. For char

              • types filling contiguous areas of memory, this becomes an inline call

              • to @c memset or @ wmemset.

              • _GLIBCXX_RESOLVE_LIB_DEFECTS

              • DR 865. More algorithms that throw away information */ template<typename _OI, typename _Size, typename _Tp> inline _OI fill_n(_OI __first, _Size __n, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OI, _Tp>)

                return _OI(std::__fill_n_a(std::__niter_base(__first), __n, __value)); }

              template struct __equal { template<typename _II1, typename _II2> static bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } };

              template<> struct __equal { template static bool equal(const _Tp* __first1, const _Tp* __last1, const _Tp* __first2) { return !__builtin_memcmp(__first1, __first2, sizeof(_Tp) * (__last1 - __first1)); } };

              template<typename _II1, typename _II2> inline bool __equal_aux(_II1 __first1, _II1 __last1, _II2 __first2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = ((__is_integer<_ValueType1>::__value || __is_pointer<_ValueType1>::__value) && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value && __are_same<_ValueType1, _ValueType2>::__value);

                return std::__equal<__simple>::equal(__first1, __last1, __first2);
              }
              

              template<typename, typename> struct __lc_rai { template<typename _II1, typename _II2> static _II1 __newlast1(_II1, _II1 __last1, _II2, _II2) { return __last1; }

                template<typename _II>
                  static bool
                  __cnd2(_II __first, _II __last)
                  { return __first != __last; }
              };
              

              template<> struct __lc_rai<random_access_iterator_tag, random_access_iterator_tag> { template<typename _RAI1, typename _RAI2> static _RAI1 __newlast1(_RAI1 __first1, _RAI1 __last1, _RAI2 __first2, _RAI2 __last2) { const typename iterator_traits<_RAI1>::difference_type __diff1 = __last1 - __first1; const typename iterator_traits<_RAI2>::difference_type __diff2 = __last2 - __first2; return __diff2 < __diff1 ? __first1 + __diff2 : __last1; }

                template<typename _RAI>
                  static bool
                  __cnd2(_RAI, _RAI)
                  { return true; }
              };
              

              template<typename _II1, typename _II2, typename _Compare> bool __lexicographical_compare_impl(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp) { typedef typename iterator_traits<_II1>::iterator_category _Category1; typedef typename iterator_traits<_II2>::iterator_category _Category2; typedef std::__lc_rai<_Category1, _Category2> __rai_type;

                __last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2);
                for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2);
                 ++__first1, ++__first2)
              {
                if (__comp(__first1, __first2))
                  return true;
                if (__comp(__first2, __first1))
                  return false;
              }
                return __first1 == __last1 && __first2 != __last2;
              }
              

              template struct __lexicographical_compare { template<typename _II1, typename _II2> static bool __lc(_II1, _II1, _II2, _II2); };

              template template<typename _II1, typename _II2> bool __lexicographical_compare<_BoolType>:: __lc(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { return std::__lexicographical_compare_impl(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_less_iter()); }

              template<> struct __lexicographical_compare { template<typename _Tp, typename _Up> static bool __lc(const _Tp* __first1, const _Tp* __last1, const _Up* __first2, const _Up* __last2) { const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = __builtin_memcmp(__first1, __first2, std::min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } };

              template<typename _II1, typename _II2> inline bool __lexicographical_compare_aux(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = (__is_byte<_ValueType1>::__value && __is_byte<_ValueType2>::__value && !__gnu_cxx::__numeric_traits<_ValueType1>::__is_signed && !__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value);

                return std::__lexicographical_compare<__simple>::__lc(__first1, __last1,
              						    __first2, __last2);
              }
              

              template<typename _ForwardIterator, typename _Tp, typename _Compare> _ForwardIterator __lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;

                _DistanceType __len = std::distance(__first, __last);
              
                while (__len > 0)
              {
                _DistanceType __half = __len >> 1;
                _ForwardIterator __middle = __first;
                std::advance(__middle, __half);
                if (__comp(__middle, __val))
                  {
                    __first = __middle;
                    ++__first;
                    __len = __len - __half - 1;
                  }
                else
                  __len = __half;
              }
                return __first;
              }
              

              /**

              • @brief Finds the first position in which @a val could be inserted

              •     without changing the ordering.
                
              • @param __first An iterator.

              • @param __last Another iterator.

              • @param __val The search term.

              • @return An iterator pointing to the first element not less

              •              than</em> @a val, or end() if every element is less than 
                
              •              @a val.
                
              • @ingroup binary_search_algorithms */ template<typename _ForwardIterator, typename _Tp> inline _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_partitioned_lower(__first, __last, __val);

                return std::__lower_bound(__first, __last, __val, __gnu_cxx::__ops::__iter_less_val()); }

              /// This is a helper function for the sort routines and for random.tcc. // Precondition: __n > 0. inline _GLIBCXX_CONSTEXPR int __lg(int __n) { return sizeof(int) * CHAR_BIT - 1 - __builtin_clz(__n); }

              inline _GLIBCXX_CONSTEXPR unsigned __lg(unsigned __n) { return sizeof(int) * CHAR_BIT - 1 - __builtin_clz(__n); }

              inline _GLIBCXX_CONSTEXPR long __lg(long __n) { return sizeof(long) * CHAR_BIT - 1 - __builtin_clzl(__n); }

              inline _GLIBCXX_CONSTEXPR unsigned long __lg(unsigned long __n) { return sizeof(long) * CHAR_BIT - 1 - __builtin_clzl(__n); }

              inline _GLIBCXX_CONSTEXPR long long __lg(long long __n) { return sizeof(long long) * CHAR_BIT - 1 - __builtin_clzll(__n); }

              inline _GLIBCXX_CONSTEXPR unsigned long long __lg(unsigned long long __n) { return sizeof(long long) * CHAR_BIT - 1 - __builtin_clzll(__n); }

              _GLIBCXX_END_NAMESPACE_VERSION

              _GLIBCXX_BEGIN_NAMESPACE_ALGO

              /**

              • @brief Tests a range for element-wise equality.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @return A boolean true or false.

              • This compares the elements of two ranges using @c == and returns true or

              • false depending on whether all of the corresponding elements of the

              • ranges are equal. */ template<typename _II1, typename _II2> inline bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_II1>::value_type, typename iterator_traits<_II2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1);

                return std::__equal_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2)); }

              /**

              • @brief Tests a range for element-wise equality.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __binary_pred A binary predicate @link functors

              •              functor@endlink.
                
              • @return A boolean true or false.

              • This compares the elements of two ranges using the binary_pred

              • parameter, and returns true or

              • false depending on whether all of the corresponding elements of the

              • ranges are equal. */ template<typename _IIter1, typename _IIter2, typename _BinaryPredicate> inline bool equal(_IIter1 __first1, _IIter1 __last1, _IIter2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_IIter1>) __glibcxx_function_requires(_InputIteratorConcept<_IIter2>) __glibcxx_requires_valid_range(__first1, __last1);

                for (; __first1 != __last1; ++__first1, ++__first2) if (!bool(__binary_pred(*__first1, *__first2))) return false; return true; }

              #if __cplusplus > 201103L

              #define __cpp_lib_robust_nonmodifying_seq_ops 201304

              /**

              • @brief Tests a range for element-wise equality.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __last2 An input iterator.

              • @return A boolean true or false.

              • This compares the elements of two ranges using @c == and returns true or

              • false depending on whether all of the corresponding elements of the

              • ranges are equal. */ template<typename _II1, typename _II2> inline bool equal(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_II1>::value_type, typename iterator_traits<_II2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);

                using _RATag = random_access_iterator_tag; using _Cat1 = typename iterator_traits<_II1>::iterator_category; using _Cat2 = typename iterator_traits<_II2>::iterator_category; using _RAIters = _and<is_same<_Cat1, _RATag>, is_same<_Cat2, _RATag>>; if (_RAIters()) { auto __d1 = std::distance(__first1, __last1); auto __d2 = std::distance(__first2, __last2); if (__d1 != __d2) return false; return _GLIBCXX_STD_A::equal(__first1, __last1, __first2); }

                for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return __first1 == __last1 && __first2 == __last2; }

              /**

              • @brief Tests a range for element-wise equality.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __last2 An input iterator.

              • @param __binary_pred A binary predicate @link functors

              •              functor@endlink.
                
              • @return A boolean true or false.

              • This compares the elements of two ranges using the binary_pred

              • parameter, and returns true or

              • false depending on whether all of the corresponding elements of the

              • ranges are equal. */ template<typename _IIter1, typename _IIter2, typename _BinaryPredicate> inline bool equal(_IIter1 __first1, _IIter1 __last1, _IIter2 __first2, _IIter2 __last2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_IIter1>) __glibcxx_function_requires(_InputIteratorConcept<_IIter2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);

                using _RATag = random_access_iterator_tag; using _Cat1 = typename iterator_traits<_IIter1>::iterator_category; using _Cat2 = typename iterator_traits<_IIter2>::iterator_category; using _RAIters = _and<is_same<_Cat1, _RATag>, is_same<_Cat2, _RATag>>; if (_RAIters()) { auto __d1 = std::distance(__first1, __last1); auto __d2 = std::distance(__first2, __last2); if (__d1 != __d2) return false; return _GLIBCXX_STD_A::equal(__first1, __last1, __first2, __binary_pred); }

                for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) if (!bool(__binary_pred(*__first1, *__first2))) return false; return __first1 == __last1 && __first2 == __last2; } #endif

              /**

              • @brief Performs @b dictionary comparison on ranges.

              • @ingroup sorting_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __last2 An input iterator.

              • @return A boolean true or false.

              • Returns true if the sequence of elements defined by the range

              • [first1,last1) is lexicographically less than the sequence of elements

              • defined by the range [first2,last2). Returns false otherwise.</em>

              • (Quoted from [25.3.8]/1.) If the iterators are all character pointers,

              • then this is an inline call to @c memcmp. */ template<typename _II1, typename _II2> inline bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { #ifdef _GLIBCXX_CONCEPT_CHECKS // concept requirements typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; #endif __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);

                return std::__lexicographical_compare_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2), std::__niter_base(__last2)); }

              /**

              • @brief Performs @b dictionary comparison on ranges.

              • @ingroup sorting_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __last2 An input iterator.

              • @param __comp A @link comparison_functors comparison functor@endlink.

              • @return A boolean true or false.

              • The same as the four-parameter @c lexicographical_compare, but uses the

              • comp parameter instead of @c <. */ template<typename _II1, typename _II2, typename _Compare> inline bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);

                return std::__lexicographical_compare_impl (__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__comp)); }

              template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> pair<_InputIterator1, _InputIterator2> __mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { while (__first1 != __last1 && __binary_pred(__first1, __first2)) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); }

              /**

              • @brief Finds the places in ranges which don't match.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @return A pair of iterators pointing to the first mismatch.

              • This compares the elements of two ranges using @c == and returns a pair

              • of iterators. The first iterator points into the first range, the

              • second iterator points into the second range, and the elements pointed

              • to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1);

                return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __gnu_cxx::__ops::__iter_equal_to_iter()); }

              /**

              • @brief Finds the places in ranges which don't match.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __binary_pred A binary predicate @link functors

              •     functor@endlink.
                
              • @return A pair of iterators pointing to the first mismatch.

              • This compares the elements of two ranges using the binary_pred

              • parameter, and returns a pair

              • of iterators. The first iterator points into the first range, the

              • second iterator points into the second range, and the elements pointed

              • to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1);

                return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred)); }

              #if __cplusplus > 201103L

              template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> pair<_InputIterator1, _InputIterator2> __mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _BinaryPredicate __binary_pred) { while (__first1 != __last1 && __first2 != __last2 && __binary_pred(__first1, __first2)) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); }

              /**

              • @brief Finds the places in ranges which don't match.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __last2 An input iterator.

              • @return A pair of iterators pointing to the first mismatch.

              • This compares the elements of two ranges using @c == and returns a pair

              • of iterators. The first iterator points into the first range, the

              • second iterator points into the second range, and the elements pointed

              • to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);

                return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_equal_to_iter()); }

              /**

              • @brief Finds the places in ranges which don't match.

              • @ingroup non_mutating_algorithms

              • @param __first1 An input iterator.

              • @param __last1 An input iterator.

              • @param __first2 An input iterator.

              • @param __last2 An input iterator.

              • @param __binary_pred A binary predicate @link functors

              •     functor@endlink.
                
              • @return A pair of iterators pointing to the first mismatch.

              • This compares the elements of two ranges using the binary_pred

              • parameter, and returns a pair

              • of iterators. The first iterator points into the first range, the

              • second iterator points into the second range, and the elements pointed

              • to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> inline pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);

                return _GLIBCXX_STD_A::__mismatch(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred)); } #endif

              _GLIBCXX_END_NAMESPACE_ALGO } // namespace std

              // NB: This file is included within many other C++ includes, as a way // of getting the base algorithms. So, make sure that parallel bits // come in too if requested. #ifdef _GLIBCXX_PARALLEL

              include <parallel/algobase.h>

              #endif

              #endif

              • -1
                @ 2024-5-5 10:03:21

                #include<bits/stdc++.h> using namespace std; const int N=1e5+10; int a[N];

                int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; int>>x; cin>>x; int l=1,r=n,ans=-1; } while(l<=r){ int mid=l+r>>1; if(a[mid]>=x){ ans=mid; r=mid-1; } else l=mid+1; } cout<<ans<<endl; }

                ```
                ``````
                `````````
                
                • -1
                  @ 2024-5-5 10:02:56

                  #include<bits/stdc++.h> using namespace std; const int N=1e5+10; int a[N];

                  int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; int>>x; cin>>x; int l=1,r=n,ans=-1; } while(l<=r){ int mid=l+r>>1; if(a[mid]>=x){ ans=mid; r=mid-1; } else l=mid+1; } cout<<ans<<endl; }``

                  • -1
                    @ 2024-5-5 10:02:42

                    #include<bits/stdc++.h> using namespace std; const int N=1e5+10; int a[N];

                    int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; int>>x; cin>>x; int l=1,r=n,ans=-1; } while(l<=r){ int mid=l+r>>1; if(a[mid]>=x){ ans=mid; r=mid-1; } else l=mid+1; } cout<<ans<<endl; }

                    
                    
                    • -1
                      @ 2024-5-5 10:02:23

                      #include<bits/stdc++.h> using namespace std; const int N=1e5+10; int a[N];

                      int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; int>>x; cin>>x; int l=1,r=n,ans=-1; } while(l<=r){ int mid=l+r>>1; if(a[mid]>=x){ ans=mid; r=mid-1; } else l=mid+1; } cout<<ans<<endl; }

                      
                      
                      • -1
                        @ 2024-5-5 10:02:05

                        #include<bits/stdc++.h> using namespace std; const int N=1e5+10; int a[N];

                        int main(){ int n; cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; int>>x; cin>>x; int l=1,r=n,ans=-1; } while(l<=r){ int mid=l+r>>1; if(a[mid]>=x){ ans=mid; r=mid-1; } else l=mid+1; } cout<<ans<<endl; }

                        • -1
                          @ 2024-3-24 11:34:08
                          /*
                          f的参数1是分解的数,参数2是分解的 最小值 
                          题目要求1<a1≤a2≤a3≤…≤an,先观察一个例子,如果要分解20
                          f(20,2)=1+f(10,2)+f(5,4)
                          f(10,2)=1+f(5,2);
                          f(5,2)=1;
                          f(5,4)=1;
                          */
                          #include <bits/stdc++.h>
                          using namespace std;
                          int f(int n,int min){
                          	int sum=1;//本身包含一种
                          	for(int j=min;j*j<=n;j++){//满足 1<a1≤a2≤a3≤…≤an 到n的开平方 
                          		if(n%j==0){//j是n的因数,可以分解 
                          			sum=sum+f(n/j,j); 
                          		} 
                          	} 
                          	return sum;
                          }
                          int main(){
                          	int n,nn;
                          	cin>>n;
                          	while(n--){
                          		cin>>nn;
                          		cout<<f(nn,2)<<endl;	
                          	}
                          	
                          	return 0;
                          }
                          
                          • -1
                            @ 2024-3-17 16:20:29
                            #include<bits/stdc++.h>
                            using namespace std;
                            int p[200010];
                            bool f(int a){
                            	for(int i=2;i<=a/i;i++){  // O(sqrt(n))   O(n)
                            		if(a%i==0) {
                            			return 0;
                            		} 
                            	}	
                            	return 1;
                            }
                            int main(){
                            	int n;
                            	cin>>n;
                            	//cout << f(7) << endl;
                            	for(int i = 2; i <= 200000; i++) {
                            		if(f(i)) p[i]++;
                            	}
                            	
                            	for(int i=2;i<=n ;i++){
                            		if(!p[i]) continue;
                            		for(int j=i;j<=n - i - 2;j++){
                            			if(!p[j] || !p[n - i - j]) continue;
                            			cout << i << ' ' << j << ' ' << n - i - j << endl;
                            			return 0;
                            		}
                            	}
                            				
                            }
                            
                            • -1
                              @ 2024-3-10 11:01:12
                              #include <bits/stdc++.h>
                              int a[10][110];
                              int res[1100];
                              using namespace std;
                              int main(){
                              	int n;cin>>n;
                              	int mx=0;
                              	for(int i=1;i<=n;i++){
                              		cin>>res[i];
                              		int x=res[i];
                              		int c=0;
                              		while(x){
                              			x/=10;
                              			c++;
                              		}
                              		mx=max(mx,c);
                              	}
                              		int cc=1;
                              		for(int i=1;i<=mx;i++){
                              			for(int j=1;j<=n;j++){
                              				int x=res[j];
                              				x/=cc;
                              				a[x%10][0]++;
                              				a[x%10][a[x%10][0]] = res[j];
                              			}
                              			int idx=1;
                              			for(int j=0;j<10;j++){
                              				for(int k=1;k<=a[j][0];k++){
                              					res[idx]=a[j][k];
                              					idx++;
                              				}
                              				a[j][0]=0;
                              			}
                              			
                              			cc*=10;
                              		}
                              	for(int i=1;i<=n;i++) cout<<res[i]<<" ";
                              }
                              
                              • -2
                                @ 2024-4-21 15:19:23

                                #include<bits/stdc++.h> using namespace std; const long long N = 1e8+11; bool vis[N]; int p[N],idx; void init(long long N) { for(long long i=2;i<N;i++) { if(!vis[i]) { p[idx++]=i; } for(int j=0;j<idx&&1llip[j]<N;j++) { vis[p[j]*i]=true; if(i%p[j]==0) break; } } } int main() { std::ios::sync_with_stdio(0); long long n;cin>>n; long long t;cin>>t; init(N); while(t--){ long long x;cin>>x; cout<<p[x-1]<<"\n"; } return 0; }

                                • -2
                                  @ 2024-4-21 15:19:10

                                  #include<bits/stdc++.h> using namespace std; const long long N = 1e8+11; bool vis[N]; int p[N],idx; void init(long long N) { for(long long i=2;i<N;i++) { if(!vis[i]) { p[idx++]=i; } for(int j=0;j<idx&&1llip[j]<N;j++) { vis[p[j]*i]=true; if(i%p[j]==0) break; } } } int main() { std::ios::sync_with_stdio(0); long long n;cin>>n; long long t;cin>>t; init(N); while(t--){ long long x;cin>>x; cout<<p[x-1]<<"\n"; } return 0; }

                                  • -2
                                    @ 2024-3-31 15:34:31

                                    #include <bits/stdc++.h> using namespace std; long long arr[1000000]={0,1,2}; int main(){ int n; cin>>n; for(int i=3;i<=1000000;i++){ arr[i] = (2*arr[i-1]+arr[i-2])%32767; } for(int i=1;i<=n;i++){ int k; cin>>k; cout<<arr[k]<<endl; } return 0; }

                                    • -2
                                      @ 2023-12-10 11:33:53

                                      巴嘎

                                      • -3
                                        @ 2024-3-3 11:26:47
                                        #include<bits/stdc++.h> 
                                        using namespace std; 
                                        int cnt[26]; 
                                        int main(){ 
                                        	string s;
                                        	getline(cin,s);
                                        	for(int i=0;i<s.size();i++){
                                        		if(s[i]>='a'&&s[i]<='z'){
                                        			s[i]-=32;
                                        		}
                                        		if(s[i]>='A'&&s[i]<='Z'){
                                        			cnt[s[i]-'A']++;
                                        		}
                                        	}
                                        	for(int i=0;i<26;i++){
                                        		cout<<char(i+'A')<<":";
                                        		for(int j=1;j<=cnt[i];j++){
                                        			cout<<"*"; 
                                        		}
                                        		cout<<endl; 
                                        	}
                                        }
                                        
                                        • -3
                                          @ 2024-1-20 16:03:44
                                          #include <bits/stdc++.h>
                                          #include <cstring>
                                          using namespace std;
                                          int main(){
                                              string str;
                                              int arr[26]={0};
                                              getline(cin,str);
                                              for(int i=0;str[i];i++){
                                          		if(str[i]>='a' && str[i]<='z')
                                          			str[i]-=32; 
                                          	}
                                          	for(int i=0;str[i];i++){
                                          	    if(str[i]>='A' && str[i]<='Z')
                                          			arr[str[i]-'A']+=1;	
                                          	}
                                          	int max=arr[0];
                                          	for(int i=0;i<26;i++){
                                          		if(arr[i]>max)
                                          		max=arr[i];
                                          	}
                                          	for(int i=1;i<=max;i++){
                                          	    for(int j=0;j<26;j++){
                                          	        if(max-i<arr[j])
                                          	        	cout<<"*";
                                          	        else
                                          	            cout<<" ";
                                          	        if(j!=25)
                                          	            cout<<" ";
                                          		}
                                          		cout<<endl;	
                                          	}
                                          	for(int i=0;i<26;i++){
                                          		cout<<char(i+'A');
                                          		if(i!=25) cout<<" ";
                                          	}
                                              return 0;	
                                          }
                                          

                                          信息

                                          ID
                                          1
                                          时间
                                          1000ms
                                          内存
                                          256MiB
                                          难度
                                          4
                                          标签
                                          递交数
                                          43
                                          已通过
                                          21
                                          上传者