#599. 判断整除

判断整除

题目描述

一个给定的正整数序列,在每个数之前都插入+号或−号后计算它们的和。比如序列:1、2、4共有8种可能的序列:

(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7

所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、−3、−6、−9……都可以认为是3的倍数。

输入格式

输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。

输出格式

如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)

样例

样例输出

3 2
1 2 4

样例输出

NO